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Stochastic effects may cause “fade-out” of an infectious disease in a population immediately after an
epidemic outbreak. We evaluate the epidemic fade-out probability by a WKB method and find that the most
probable path to extinction of the disease comes from an instantonlike orbit in the phase space of an underlying
Hamiltonian flow.
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An infectious disease can disappear from a population
immediately after a major infection outbreak �1,2�. This phe-
nomenon, called “epidemic fade-out,” occurs if the epidemic
dynamics is oscillatory and the number of infected individu-
als at the end of the first outbreak of the disease is relatively
low so that fluctuations in the disease transmission can
“switch off” the disease. Epidemic fade-out has been ad-
dressed by epidemiologists via stochastic simulations. One
exception is Ref. �2� which arrived at important analytical
results which we briefly review and use below.

Epidemic fade-out is an example of a large fluctuation in
a multivariate stochastic system far from equilibrium. There
is no general theory of fluctuations in such systems and find-
ing the probability of a large fluctuation is hard. Here we
develop a theoretical framework for analysis of epidemic
fade-out on the example of stochastic SI model: a Markov
process involving susceptible and infected subpopulations
�1–3�. We formulate the problem in a master equation set-
ting. In contrast to endemic fade-out, which can be studied
assuming quasistationarity �4�, the epidemic fade-out occurs
on a fast time scale �determined by the deterministic rate
equations of the SIR model�, so no ready-to-use methods of
solution are available. To overcome this difficulty we derive
a stationary equation for the mean residence time of the
population in a certain state. Then we develop a WKB theory
using the population size as a large parameter. In the WKB
framework the problem reduces to that of finding a special
zero-energy phase orbit of the underlying Hamiltonian: the
orbit which provides a global minimum to the action func-
tional for boundary conditions corresponding to epidemic
fade-out. This orbit, which encodes the most probable path
of the population toward the disease extinction, turns out to
be instantonlike �5�. We observe that the epidemic fade-out
instanton exists only in the regime when the epidemic dy-
namics, as described by the deterministic rate equations, is
oscillatory. Of special interest is the regime where the num-
ber of infected exhibits large oscillations prior to reaching
the endemic state. By using a matched asymptotic expansion,
we analytically calculate the action along the instanton
which determines the epidemic fade-out probability.

The probability Pn,m�t� to observe, at time t, n susceptible
and m infected individuals is governed by the master equa-
tion with transition rates from Table I. Solving the master
equation analytically is hard. The often used van Kampen
system-size expansion �vKSSE� �6� approximates the master
equation by a Fokker-Planck equation. In the context of epi-

demic fade-out in the SI model the vKSSE was employed in
Ref. �2�. The vKSSE is very useful for “typical” fluctuations
�6�, but it often fails for large fluctuations �7�, such as those
causing extinction.

Before dealing with the master equation, consider the de-
terministic rate equations for the SI model:

Ṡ = �N − ��/N�SI − �S, İ = ��/N�SI − �I . �1�

For ��� there is an attracting fixed point S̄= �� /��N, Ī
=��1 /�−1 /��N which describes an endemic infection level,

and an unstable �saddle� point S̄=N , Ī=0 which describes
an infection-free population. At ��4��−���� /��2 the at-
tracting fixed point is a stable node. We are mostly interested
in the opposite inequality, when the attracting fixed point is a
stable focus and the epidemic dynamics is oscillatory. Let a
few infected be introduced into a susceptible population. For
small � the minimum number of infected at the end of the
first outbreak of the disease is small; see the dashed line in
Fig. 1. As a result, stochasticity, missed by the rate equations,
can switch off the disease before the endemic level is
reached. To describe this process we use the master equation

Ṗn,m = �
n�,m�

Mn,m;n�,m�Pn�,m��t� = ��N�Pn−1,m − Pn,m�

+ �n + 1�Pn+1,m − nPn,m� + ���m + 1�Pn,m+1 − mPn,m�

+ ��/N���n + 1��m − 1�Pn+1,m−1 − nmPn,m� . �2�

A natural initial condition is a product of Kronecker deltas:
Pn,m�t=0�=�n,N�m,m0

. One boundary condition reflects the
fact that m=0 is, for any n, an absorbing state. Being inter-
ested in epidemic fade-out, we exclude from consideration
all stochastic trajectories that do not reach the extinction
boundary m=0 immediately after the first outbreak and leave
the region of small m. This is achieved by introducing an

TABLE I. Stochastic SI model.

Event Type of transition Rate

Infection S→S−1, I→ I+1 �� /N�SI

Renewal of susceptible S→S+1 �N

Removal of infected I→ I−1 �I

Removal of susceptible S→S−1 �S
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artificial absorbing boundary �6� that will be specified
shortly.

The disease can only disappear from the population via
transition from a state �n ,1� to the state �n ,0�. Consider the
mean residence time Tn,m=�0

�Pn,m�t�dt of the system in the
state �n ,m�, where m�0. The accumulated extinction prob-
ability Pn from the state �n ,1� is Pn=�Tn,1 and the total
extinction probability is P=�nPn. Integrating Eq. �2� over t
from 0 to � and using the equality Pn,m�t=��=0 and the
initial condition, we obtain a stationary equation for Tn,m�0:

�
n�,m��0

Mn,m;n�,m�Tn�,m� + �n,n0
�m,m0

= 0. �3�

We assume throughout this work that N�1. Here the sto-
chasticity is weak �but very important�, and Eq. �3� can be
approximately solved by the WKB ansatz Tn,m
=a�x ,y�e−NS�x,y� �8�, where a and S are smooth functions of
the continuous variables x=n /N−1 and y=m /N.

In the leading WKB order one arrives at a stationary
Hamilton-Jacobi equation H�x ,y ,�xS ,�yS�=0, where

H�x,y,px,py� = epx − 1 + �1 + x��e−px − 1�

+ K�1 − ��y�e−py − 1� + Ky�1 + x��epy−px − 1� ,

�4�

and we have introduced rescaled parameters �=1−� /� and
K=� /� and rescaled time by the rate constant � �9�. The
four-dimensional �4D� phase space, defined by Hamiltonian
�4�, yields an instructive visualization of the most probable
path of the disease toward fade-out. As H is independent of
time, H�x ,y , px , py�=E=const. Furthermore, in view of sta-
tionarity of the Hamilton-Jacobi equation, we only need to
deal with zero-energy orbits, E=0. The simplest among them
are fluctuationless orbits lying in the plane px= py =0. These
are described by the equations

ẋ = − x − Ky�1 + x�, ẏ = − K�1 − ��y + Ky�1 + x� , �5�

which coincide with �rescaled� rate equations �1�. Disease
fade-out demands a fluctuational orbit, for which the mo-
menta px and py are nonzero. Before dealing with such or-
bits, consider the fixed points of the zero-energy Hamil-
tonian. There are exactly three such points, all of them 4D

saddles �4�. Two of them, B= �0,0 ,0 , ln�1−��� and C
= �0,0 ,0 ,0�, describe infection-free steady states. Point C is
fluctuationless: it corresponds to the saddle point of the rate
equations. Point B is fluctuational, as its py �0. Finally, the
fluctuationless fixed point A= �−� , �� /K��1−��−1 ,0 ,0� corre-
sponds to the endemic fixed point of the rate equations.

Let one or few infected be introduced into an infection-
free population. In the leading WKB order this initial condi-
tion can correspond to different phase-space points whose
projections on the xy plane are very close to the fluctuation-
less fixed point C. Each of these phase-space points gener-
ates an orbit which exits the fixed point C along the manifold
spanned by it two unstable eigenvectors. For epidemic
fade-out to occur, such an orbit must reach the extinction
hyperplane y=0 before crossing, say, the hyperplane
y=−�x /K��1−��−1, −��x�0 �which is a 4D extension of
the artificial absorbing boundary mentioned above�. One can
prove that, among all such orbits, the one providing the glo-
bal minimum to the action S�x ,0� �and therefore the global
maximum to the fade-out probability Pn� ends in the fluctua-
tional fixed point B. As a result, max Pn=PN. Therefore, at
N�1, the epidemic fade-out problem reduces to that of find-
ing a heteroclinic orbit going from C to B. We found numeri-
cally that such a heteroclinic orbit CB exists if and only if
K�Kc= �1 /4���1−��−2: when the endemic fixed point, pre-
dicted by the rate equations, is a focus. As K exceeds Kc, the
heteroclinic orbit emerges via a global bifurcation. In fact,
one finds multiple heteroclinic orbits at K�Kc. They can be
classified by whether their xy projections exhibit a single
loop, two loops, three loops, etc. A single-loop orbit, see Fig.
2, corresponds to disease fade-out immediately after the first
outbreak. A two-loop orbit corresponds to a fade-out imme-
diately after the second outbreak, etc. The connection be-
tween the rapid epidemic fade-out in a stochastic population
and a zero-energy instantonlike orbit of an effective Hamil-
tonian is a central result of our work. We stress that previous
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FIG. 1. �Color online� An epidemic outbreak in the SI model.
Shown is the rescaled number of infected y= I /N versus rescaled
time �t. Dashed line: prediction from rate equations �5�. Solid line:
the epidemic fade-out instanton. The rescaled parameters K=� /�
=30 and �=1−� /�=0.5.

a

�0.7 �0.5 �0.3 �0.1 0

0.05

0.1

0.15

x

y

b

0 1 2 3 4 5

�0.6

�0.4

�0.2

0

t

p
y,

p x

0 1 2 3
�0.01
�0.005

0

(b)

(a)

FIG. 2. �Color online� �a� An epidemic outbreak on the xy plane
as predicted by rate equations �5� �dashed line� and the epidemic
fade-out instanton �thick solid line�. Also shown is the endemic
fade-out instanton �4� �thin solid line�. �b� py �inset: px� vs t for the
epidemic fade-out instanton. The rescaled parameters are K=30 and
�=1 /2.
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studies, which found instantonlike orbits in the context of
population extinction, dealt with extinction from long-lived
metastable states.

How does the epidemic fade-out instanton look like at
different parameters? For K��1 the fraction of infected ver-
sus time, y�t�, first rapidly grows and becomes large and then
falls down to a small value �see Fig. 1, solid line�, closely
following the prediction from the rate equations. Then y�t�
strongly deviates from the deterministic path and rapidly
goes to zero. The x, px, and py dynamics for the same values
of K and � are depicted in Fig. 2. On can see that a rapid
deviation from the deterministic path occurs around x=−�.
Notably, �px� remains much smaller than unity everywhere.
�py�, however, is steadily growing and, at nonsmall �, be-
comes O�1� as the instanton approaches the fluctuational
fixed point B. As a result, the vKSSE is invalid for most of
the small-y region where disease extinction occurs.

Near the bifurcation, 0�K−Kc	Kc, our numerics re-
veals an intimate relation between the epidemic fade-out in-
stanton and two other zero-energy heteroclinic orbits. The
first is the deterministic orbit which lies in the xy plane and
goes from C to A. The second is the endemic fade-out in-
stanton: a heteroclinic orbit which goes from A to B and
describes stochastic endemic fade-out �4�. The xy projection
of the epidemic fade-out instanton initially closely follows
the deterministic orbit CA; see Fig. 3. The momenta px and
py are very small here. They slowly build up and become
important only when the xy projection of the instanton
reaches a close vicinity of the endemic point A. Here the
projection of the epidemic fade-out instanton departs from
the deterministic orbit �see the inset of Fig. 3� and rapidly
approaches the projection of the endemic fade-out instanton.

To evaluate P�PN in the leading WKB order, we need to
calculate the accumulated action S0 along the instanton. In
the rest of this paper we will focus on the important regime
of K��1, when the fade-out probability can indeed be sig-
nificant. It turns out that the presence of the small parameter
�K��−1 enables one to find the instanton, and calculate S0,
analytically. An immediate simplification comes from the

fact that the fluctuations of the number of susceptibles are
negligible everywhere, so we can Taylor expand Hamiltonian
�4� in px	1 and truncate the expansion at first order. An-
other simplification employs the strong inequality y	�
which holds in the whole region where the epidemic fade-out
instanton significantly deviates from the deterministic orbit.
A complete calculation of the instanton will be reported else-
where. Here we will analytically calculate S0. As can be
verified a posteriori, the main contribution to S0 comes from
a narrow region �x+��	�, where the instanton rapidly de-
parts from the deterministic orbit. Furthermore, �py�	1 in
this narrow region, so one can Taylor expand Eq. �4� in py
and truncate the expansion at py

2. Neglecting small terms, we
can reduce Hamiltonian �4� to

H�x,y,px,py� 	 �px + Kypy�x + � + �1 − ��py� . �6�

The reduced problem is integrable. There is no need in the
full solution, however, if one only needs to evaluate S0. The
Hamilton’s equation for ẋ yields x�t�=��t−1�, where the ar-
bitrary constant is fixed by choosing x�t=0�=−�. The Hamil-
ton’s equation for ṗy reads

ṗy = − Kpy�x + � + �1 − ��py� . �7�

Plugging here x=��t−1�, we obtain an exactly soluble equa-
tion for py�t�. The boundedness of py�t� fixes the integration
constant and we obtain

py =
1

K�1 − ��
d

dt
ln


t

�

e−K�u2/2du . �8�

Now let us calculate Ṡ along the instanton: Ṡ= pxẋ+ pyẏ=H
+K�1−��ypy

2�F, where we have used H=0 and denoted
F�K�1−��ypy

2. Using the Hamilton’s equations, we observe

that F�t� obeys the equation Ḟ=−K�x+��F=−K�tF. Inte-
gration yields

F�t� � K�1 − ��y�t�py
2�t� = C exp�− K�t2/2� , �9�

where C=const. Therefore, Ṡ=C exp�−K�t2 /2� and

S0 = 

−�

�

Ṡdt = C�2


K�
. �10�

What is left is to find C. Importantly, the deterministic solu-
tion still holds in the region of −x−�	� �or −t	1�. For
K��1 the deterministic solution was found by van Her-
waarden �2�. In the region of −x−�	�, Eqs. �3.25 a-d� of
van Herwaarden can be simplified and rewritten, in our no-
tation, as

y�t� = ym exp�K�t2/2� , �11�

ym = ym�K,�� =
�� + xm�xm

1 + xm
− xm

�
�K�

�exp�K�xm + �� − �1 + xm
−1�Q1�xm�� , �12�

where xm=xm��� is the negative root of the equation xm
= �1−��ln�1+xm�, and Q1�xm� is given by
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FIG. 3. �Color online� Same as in Fig. 2 but for K=1.7875 and
�=1 /3, so Kc=1.6875. The endemic fade-out instanton �4� is shown
by the dash-dotted line. Inset: a blowup near the endemic fixed
point A.
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Q1�xm� = 

0

xm � s�s + ��
�1 + s�2�s − �1 − ��ln�1 + s��

−
xm

�1 + xm��s − xm��ds . �13�

�For �→0 one obtains xm���	−2� and Q1	−4�.� In the
region of �K��−1/2	−x−�	� Eq. �8� becomes

py�t� = − �1 − ��−1��/�2
K��1/2exp�− K�t2/2� . �14�

Using Eqs. �9�, �11�, and �14� in their joint validity region
�K��−1/2	−x−�	�, we obtain C=ym� / �2
�1−���. Putting
everything together, we obtain the epidemic fade-out prob-
ability P�exp�−NS0�, where S0 is given by Eq. �10� and ym
is given by Eqs. �12� and �13�. Note that S0 is exponentially
small in K��1, so the WKB result holds only for very large
N: NS0�1. In Fig. 4 our results for S0 are compared with
those obtained by a numerical integration of the Hamilton’s
equations. For large K� the agreement is very good. For
NS0�1 the epidemic fade-out probability is large.

That truncation of H at py
2 yields, at K��1, an accurate

leading-order result for S0 justifies the validity of the vKSSE
for calculating S0. Indeed, our leading-order result for P
coincides with that obtained, by a different method, by van
Herwaarden �2� who used the vKSSE. We reiterate, however,
that the vKSSE is invalid in most of the small-y region,
while the full WKB Hamiltonian �4� holds there. Only at
�	1, when �py�	1 on the whole instanton, the vKSSE de-

scribes the instanton correctly. In this case one obtains S0
= �2�5 /
e4K�1/2�e /2�−K�.

In summary, we have shown that rapid epidemic fade-out
in stochastic populations is amenable to an accurate analysis
via a WKB theory. We calculated the epidemic fade-out
probability and established an unexpected connection be-
tween the rapid epidemic fade-out and an instantonlike orbit
of an underlying Hamiltonian. The epidemic fade-out instan-
ton should be observable in stochastic simulations of, and
actual data on, epidemics in small communities.
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